Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases.

نویسندگان

  • J A Vorholt
  • L Chistoserdova
  • S M Stolyar
  • R K Thauer
  • M E Lidstrom
چکیده

The methylotrophic proteobacterium Methylobacterium extorquens AM1 possesses tetrahydromethanopterin (H(4)MPT)-dependent enzymes, which are otherwise specific to methanogenic and sulfate-reducing archaea and which have been suggested to be involved in formaldehyde oxidation to CO(2) in M. extorquens AM1. The distribution of H(4)MPT-dependent enzyme activities in cell extracts of methylotrophic bacteria from 13 different genera are reported. H(4)MPT-dependent activities were detected in all of the methylotrophic and methanotrophic proteobacteria tested that assimilate formaldehyde by the serine or ribulose monophosphate pathway. H(4)MPT-dependent activities were also found in autotrophic Xanthobacter strains. However, no H(4)MPT-dependent enzyme activities could be detected in other autotrophic alpha-proteobacteria or in gram-positive methylotrophic bacteria. Genes encoding methenyl H(4)MPT cyclohydrolase (mch genes) were cloned and sequenced from several proteobacteria. Bacterial and archaeal Mch sequences have roughly 35% amino acid identity and form distinct groups in phylogenetic analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrahydromethanopterin-dependent methanogenesis from non-physiological C1 donors in Methanobacterium thermoautotrophicum.

Methanogenesis from the non-physiological C1 donors thioproline, thiazolidine, hexamethylenetetramine, formaldehyde (HCHO), and HOCH2-S-coenzyme M (CoM) was catalyzed by cell extracts of Methanobacterium thermoautotrophicum under a hydrogen atmosphere. Tetrahydromethanopterin (H4MPT) and HS-CoM were required in the reaction mixture. The non-physiological compounds were found to be in chemical e...

متن کامل

Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.

Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we...

متن کامل

Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1.

The methylotroph Methylobacterium extorquens AM1 oxidizes methanol and methylamine to formaldehyde and subsequently to formate, an intermediate that serves as the branch point between assimilation (formation of biomass) and dissimilation (oxidation to CO₂). The oxidation of formaldehyde to formate is dephosphotetrahydromethanopterin (dH₄MPT) dependent, while the assimilation of carbon into biom...

متن کامل

Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1.

In serine cycle methylotrophs, methylene tetrahydrofolate (H4F) is the entry point of reduced one-carbon compounds into the serine cycle for carbon assimilation during methylotrophic metabolism. In these bacteria, two routes are possible for generating methylene H4F from formaldehyde during methylotrophic growth: one involving the reaction of formaldehyde with H4F to generate methylene H4F and ...

متن کامل

Tetrahydromethanopterin, a carbon carrier in methanogenesis.

Evidence obtained by 13C NMR spectroscopy indicates that tetrahydromethanopterin (H4MPT) serves as a carbon carrier for C1 units at the methine, methylene, and methyl levels of oxidation. All three derivatives of H4MPT served as substrates for methanogenesis by cell extracts under a hydrogen atmosphere; in each instance, methane evolved at a rate comparable to that obtained when 2-(methylthio)e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 18  شماره 

صفحات  -

تاریخ انتشار 1999